New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. ÌýYou can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
WELCOME BACK
T2-based temperature monitoring in abdominal fat during MR-guided focused ultrasound treatment of patients with uterine fibroids.
ÌÇÐÄ´«Ã½
T2-based temperature monitoring in abdominal fat during MR-guided focused ultrasound treatment of patients with uterine fibroids. Journal of therapeutic ultrasound Ozhinsky, E., Kohi, M. P., Ghanouni, P., Rieke, V. 2015; 3: 15-?Abstract
Near-field heating is a potential problem in focused ultrasound treatments, as it can result in thermal injury to skin, subcutaneous fat, and other tissues. Our goals were to determine if T2-based temperature mapping could be used reliably to measure near-field heating in adipose tissue and whether it is practical to perform such mapping during focused ultrasound treatments.We investigated the dependence of T2 on temperature in ex vivo adipose tissue at 3T using a double-echo fast spin echo (FSE) sequence. We implemented and evaluated the T2-based temperature mapping technique in the adipose tissue of two healthy volunteers. Finally, we applied the technique during magnetic resonance-guided focused ultrasound (MRgFUS) treatments to measure near-field heating in eight patients with uterine fibroids.Calibration experiments in porcine adipose tissue determined a temperature coefficient of 6.16 ms/°C during heating and 5.37 ms/°C during cooling. The volunteer experiments demonstrated a strong correlation between the skin temperature and T2-based temperature measurements in the fat layer. During the treatments of patients with uterine fibroids, we observed a measurable change in the T2 of fat tissue within the path of the ultrasound beam and a temperature increase of up to 15 °C with sustained heating of more than 10 °C.Our results demonstrate the feasibility and importance of monitoring near-field heating in fatty tissues. The implementation of near-field monitoring between sonications can shorten treatments by reducing the cooling time. It can help improve safety by avoiding excessive heating in the near field.
View details for
View details for
View details for