New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. ÌýYou can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
WELCOME BACK
Efficient Genome Editing in Induced Pluripotent Stem Cells with Engineered Nucleases In Vitro.
ÌÇÐÄ´«Ã½
Efficient Genome Editing in Induced Pluripotent Stem Cells with Engineered Nucleases In Vitro. Methods in molecular biology (Clifton, N.J.) Termglinchan, V., Seeger, T., Chen, C., Wu, J. C., Karakikes, I. 2017; 1521: 55-68Abstract
Precision genome engineering is rapidly advancing the application of the induced pluripotent stem cells (iPSCs) technology for in vitro disease modeling of cardiovascular diseases. Targeted genome editing using engineered nucleases is a powerful tool that allows for reverse genetics, genome engineering, and targeted transgene integration experiments to be performed in a precise and predictable manner. However, nuclease-mediated homologous recombination is an inefficient process. Herein, we describe the development of an optimized method combining site-specific nucleases and the piggyBac transposon system for "seamless" genome editing in pluripotent stem cells with high efficiency and fidelity in vitro.
View details for