New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. ÌýYou can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
WELCOME BACK
The N-terminal Set-beta Protein Isoform Induces Neuronal Death
ÌÇÐÄ´«Ã½
The N-terminal Set-beta Protein Isoform Induces Neuronal Death JOURNAL OF BIOLOGICAL CHEMISTRY Trakhtenberg, E. F., Morkin, M. I., Patel, K. H., Fernandez, S. G., Sang, A., Shaw, P., Liu, X., Wang, Y., Mlacker, G. M., Gao, H., Velmeshev, D., Dombrowski, S. M., Vitek, M. P., Goldberg, J. L. 2015; 290 (21): 13417-13426Abstract
Set-ß protein plays different roles in neurons, but the diversity of Set-ß neuronal isoforms and their functions have not been characterized. The expression and subcellular localization of Set-ß are altered in Alzheimer disease, cleavage of Set-ß leads to neuronal death after stroke, and the full-length Set-ß regulates retinal ganglion cell (RGC) and hippocampal neuron axon growth and regeneration in a subcellular localization-dependent manner. Here we used various biochemical approaches to investigate Set-ß isoforms and their role in the CNS, using the same type of neurons, RGCs, across studies. We found multiple alternatively spliced isoforms expressed from the Set locus in purified RGCs. Set transcripts containing the Set-ß-specific exon were the most highly expressed isoforms. We also identified a novel, alternatively spliced Set-ß transcript lacking the nuclear localization signal and demonstrated that the full-length (~39-kDa) Set-ß is localized predominantly in the nucleus, whereas a shorter (~25-kDa) Set-ß isoform is localized predominantly in the cytoplasm. Finally, we show that an N-terminal Set-ß cleavage product can induce neuronal death.
View details for
View details for
View details for
View details for