New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. ÌýYou can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
WELCOME BACK
Bioacoustic-enabled patterning of human iPSC-derived cardiomyocytes into 3D cardiac tissue
ÌÇÐÄ´«Ã½
Bioacoustic-enabled patterning of human iPSC-derived cardiomyocytes into 3D cardiac tissue BIOMATERIALS Serpooshan, V., Chen, P., Wu, H., Lee, S., Sharma, A., Hu, D. A., Venkatraman, S., Ganesan, A. V., Usta, O. B., Yarmush, M., Yang, F., Wu, J. C., Demirci, U., Wu, S. M. 2017; 131: 47-57Abstract
The creation of physiologically-relevant human cardiac tissue with defined cell structure and function is essential for a wide variety of therapeutic, diagnostic, and drug screening applications. Here we report a new scalable method using Faraday waves to enable rapid aggregation of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) into predefined 3D constructs. At packing densities that approximate native myocardium (10(8)-10(9) cells/ml), these hiPSC-CM-derived 3D tissues demonstrate significantly improved cell viability, metabolic activity, and intercellular connection when compared to constructs with random cell distribution. Moreover, the patterned hiPSC-CMs within the constructs exhibit significantly greater levels of contractile stress, beat frequency, and contraction-relaxation rates, suggesting their improved maturation. Our results demonstrate a novel application of Faraday waves to create stem cell-derived 3D cardiac tissue that resembles the cellular architecture of a native heart tissue for diverse basic ÌÇÐÄ´«Ã½ and clinical applications.
View details for
View details for