New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. ÌýYou can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
WELCOME BACK
Human Genome Sequencing at the Population Scale: A Primer on High-Throughput DNA Sequencing and Analysis
ÌÇÐÄ´«Ã½
Human Genome Sequencing at the Population Scale: A Primer on High-Throughput DNA Sequencing and Analysis AMERICAN JOURNAL OF EPIDEMIOLOGY Goldfeder, R. L., Wall, D. P., Khoury, M. J., Ioannidis, J. A., Ashley, E. A. 2017; 186 (8): 1000–1009Abstract
Most human diseases have underlying genetic causes. To better understand the impact of genes on disease and its implications for medicine and public health, ÌÇÐÄ´«Ã½ers have pursued methods for determining the sequences of individual genes, then all genes, and now complete human genomes. Massively parallel high-throughput sequencing technology, where DNA is sheared into smaller pieces, sequenced, and then computationally reordered and analyzed, enables fast and affordable sequencing of full human genomes. As the price of sequencing continues to decline, more and more individuals are having their genomes sequenced. This may facilitate better population-level disease subtyping and characterization, as well as individual-level diagnosis and personalized treatment and prevention plans. In this review, we describe several massively parallel high-throughput DNA sequencing technologies and their associated strengths, limitations, and error modes, with a focus on applications in epidemiologic ÌÇÐÄ´«Ã½ and precision medicine. We detail the methods used to computationally process and interpret sequence data to inform medical or preventative action.
View details for
View details for
View details for