New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. ÌýYou can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
WELCOME BACK
HPLC analysis of CSF hypocretin-1 in type 1 and 2 narcolepsy.
ÌÇÐÄ´«Ã½
HPLC analysis of CSF hypocretin-1 in type 1 and 2 narcolepsy. Scientific reports Sakai, N., Matsumura, M., Lin, L., Mignot, E., Nishino, S. 2019; 9 (1): 477Abstract
Narcolepsy is a chronic sleep disorder caused by a loss of hypocretin (hcrt) neurons in the hypothalamus. Cerebrospinal fluid (CSF) hcrt-1 measurement has been well established as a gold standard of narcolepsy diagnosis, although some portions of narcoleptic patients show normal hcrt-1 levels. We aimed to examine peptide degradation of hcrt-1 and its abnormality in the CSF of patients by using high performance liquid chromatography (HPLC) followed by radioimmunoassay (RIA). CSF was collected from healthy controls, narcoleptic patients of type 1 with hcrt-1 deficiency, type 1 with normal hcrt-1 level, and type 2 with normal hcrt-1 level. We found that the majority of hcrt-1 immunoreactivity in extracted CSF was derived from unauthentic hcrt-1 peaks, which are predicted to be inactive metabolites, and the intact hcrt-1 peptide was less than 10% of the gross amount, suggesting that the regular RIA for CSF hcrt-1 measures largely reflect the unauthentic hcrt-1-related metabolites rather than the intact one. As expected, all hcrt-1-related peaks were abolished in type 1 with hcrt-1 deficiency. Importantly, we also found that the sum of the authentic hcrt-1 peptide (peaks 3 and 4) significantly decreased in non-deficient type 1 and tended to decrease in type 2 narcoleptic patients although the levels with the regular RIA in non-extracted CSF was equivalent to healthy controls. Immunoreactivity with unauthentic hcrt-1 metabolites may masks the possible decline in authentic hcrt-1 level caused by the partial loss of hcrt neurons. Our findings may provide new insights into the degradation of the hcrt-1 peptide and the pathophysiology of narcolepsy.
View details for