New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. ÌýYou can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
WELCOME BACK
Noninvasive De novo Imaging of Human Embryonic Stem Cell-Derived Teratoma Formation
ÌÇÐÄ´«Ã½
Noninvasive De novo Imaging of Human Embryonic Stem Cell-Derived Teratoma Formation CANCER RESEARCH Cao, F., Li, Z., Lee, A., Liu, Z., Chen, K., Wang, H., Cai, W., Chen, X., Wu, J. C. 2009; 69 (7): 2709-2713Abstract
Teratoma formation can be a serious drawback after the therapeutic transplantation of human embryonic stem (hES) cells. Therefore, noninvasive imaging of teratomas could be a valuable tool for monitoring patients undergoing hES cell treatment. Here, we investigated the angiogenic process within teratomas derived from hES cells and now report the first example of using (64)Cu-labeled RGD tetramer ((64)Cu-DOTA-RGD4) for positron emission tomography imaging of teratoma formation by targeting alpha(v)beta(3) integrin. H9 hES cells (2 x 10(6)), stably expressing firefly luciferase, and enhanced green fluorescence protein (Fluc-eGFP) were injected into adult nude mice (n=12) s.c. Eight weeks after transplantation, these hES cell grafts evolved into teratomas as confirmed by longitudinal bioluminescence imaging. Under micropositron emission tomography imaging, 2-deoxy-2-[(18)F]fluoro-D-glucose and 3'-deoxy-3'-[(18)F]-fluorothymidine both failed to detect hES cell-derived teratomas (0.8+/-0.5 versus 1.1+/-0.4 %ID/g, respectively; P=not significant versus background signals). By contrast, (64)Cu-DOTA-RGD4 revealed specific and prominent uptake in vascularized teratoma and significantly lower uptake in control tumors (human ovarian carcinoma 2008 cell line), which had low integrin expression (10.1+/-3.4 versus 1.4+/-1.2 %ID/g; P<0.01). Immunofluorescence staining of CD31 and beta(3) integrin also supported our in vivo imaging results (P<0.05). Moreover, we found that the cells dissociated from teratomas showed higher alpha(v)beta(3) integrin expression than the 2008 cells. In conclusion, by targeting alpha(v)beta(3) integrin, we successfully showed the ability of (64)Cu-DOTA-RGD4 to noninvasively visualize teratoma formation in vivo for the first time.
View details for
View details for
View details for
View details for