New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. ÌýYou can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
WELCOME BACK
DIAGNOSTIC IMAGE QUALITY ASSESSMENT AND CLASSIFICATION IN MEDICAL IMAGING: OPPORTUNITIES AND CHALLENGES.
ÌÇÐÄ´«Ã½
DIAGNOSTIC IMAGE QUALITY ASSESSMENT AND CLASSIFICATION IN MEDICAL IMAGING: OPPORTUNITIES AND CHALLENGES. Proceedings. IEEE International Symposium on Biomedical Imaging Ma, J. J., Nakarmi, U., Kin, C. Y., Sandino, C. M., Cheng, J. Y., Syed, A. B., Wei, P., Pauly, J. M., Vasanawala, S. S. 2020; 2020: 337-340Abstract
Magnetic Resonance Imaging (MRI) suffers from several artifacts, the most common of which are motion artifacts. These artifacts often yield images that are of non-diagnostic quality. To detect such artifacts, images are prospectively evaluated by experts for their diagnostic quality, which necessitates patient-revisits and rescans whenever non-diagnostic quality scans are encountered. This motivates the need to develop an automated framework capable of accessing medical image quality and detecting diagnostic and non-diagnostic images. In this paper, we explore several convolutional neural network-based frameworks for medical image quality assessment and investigate several challenges therein.
View details for
View details for
View details for