New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. ÌýYou can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
WELCOME BACK
Theta Synchrony Is Increased near Neural Populations That Are Active When Initiating Instructed Movement
ÌÇÐÄ´«Ã½
Theta Synchrony Is Increased near Neural Populations That Are Active When Initiating Instructed Movement ENEURO Ramayya, A. G., Yang, A., Buch, V. P., Burke, J. F., Richardson, A. G., Brandon, C., Stein, J. M., Davis, K. A., Chen, H., Proekt, A., Kelz, M. B., Litt, B., Gold, J., Lucas, T. H. 2021; 8 (1)Abstract
Theta oscillations (3-8?Hz) in the human brain have been linked to perception, cognitive control, and spatial memory, but their relation to the motor system is less clear. We tested the hypothesis that theta oscillations coordinate distributed behaviorally relevant neural representations during movement using intracranial electroencephalography (iEEG) recordings from nine patients (n?=?490 electrodes) as they performed a simple instructed movement task. Using high frequency activity (HFA; 70-200?Hz) as a marker of local spiking activity, we identified electrodes that were positioned near neural populations that showed increased activity during instruction and movement. We found that theta synchrony was widespread throughout the brain but was increased near regions that showed movement-related increases in neural activity. These results support the view that theta oscillations represent a general property of brain activity that may also play a specific role in coordinating widespread neural activity when initiating voluntary movement.
View details for
View details for
View details for
View details for