New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. ÌýYou can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
WELCOME BACK
Silk Fibroin Methacrylation: Chemical Synthesis to Biomechanical Optimization in Tissue Engineering.
ÌÇÐÄ´«Ã½
Silk Fibroin Methacrylation: Chemical Synthesis to Biomechanical Optimization in Tissue Engineering. ACS biomaterials science & engineering Wu, C. A., Zhu, Y., Woo, Y. J. 2025Abstract
In recent years, a major focus in the field of tissue engineering has been the search for a suitable biomaterial for clinical applications. Researchers have sought to optimize natural, synthetic, and hybrid options, with an aim to enhance biological, chemical, physical, and mechanical properties. In the past decade, silk fibroin has emerged as a promising approach due to its suitable properties. Specifically, the chemical modification of silk fibroin with methacrylate agents, namely glycidyl methacrylate, methacrylic anhydride, and gelatin methacryloyl, confers the material with improved biophysical properties. This review presents an in-depth overview of silk fibroin's structure and suitable properties, silk fibroin methacrylate synthesis and characterization techniques, and applications of silk fibroin in bone and cartilage, skin, and nerve tissue engineering. Challenges include a limited understanding of methacrylate agents on specific cell types, which can be addressed by further in vivo investigations utilizing biomaterial compounds to confer tissue-specific needs. We conclude with our perspective of the present limitations and future trends of the methacrylated SF platform.
View details for
View details for